We consider the problem of random-design linear regression, in a distribution-free setting where no assumption is made on the distribution of the predictive/input variables. After surveying existing approaches and indicating some improvements, we explain why they fall short in our setting. We then identify the minimal assumption on the target/output under which guarantees are possible and describe a nonlinear prediction procedure achieving the optimal error bound with high probability. Joint work with Jaouad Mourtada (CREST-ENSAE Paris ) and Tomas Vaškevičius (Oxford).
Speaker: Nikita Zhivotovskiy, ETH (Zurich).
March 16, 2021
HDI Lab: https://cs.hse.ru/en/hdilab/
Faculty of Computer Science: https://cs.hse.ru/en/
Follow us: https://www.facebook.com/hsefcs, https://twitter.com/CS_HSE
Speaker: Nikita Zhivotovskiy, ETH (Zurich).
March 16, 2021
HDI Lab: https://cs.hse.ru/en/hdilab/
Faculty of Computer Science: https://cs.hse.ru/en/
Follow us: https://www.facebook.com/hsefcs, https://twitter.com/CS_HSE
- Категория
- Ризотто
Комментариев нет.